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RATE COMPLEMENTARY ENERGY PR INC IPLES
FIN ITE STRA IN PlASTICITY PROBLEMS ; AND FINITE ELEMENTh

Satya N. At lur i
School of Engineering Science and Mechanic. /

Georgia Institute of Technology
Atlanta, Georgia 30332, USA

ABSTRACT :

Complementary energy theorems, for the rate problem of finite strain c laa-
aiea!. elasto.plasticlty, in both Updated and Total Lagrangean rate forms with
alter nate s tress-rates and conjugate measures of strain rate , are st ud ied from
the point of view of their application in finite element schemes. TWO ne~v
complementary theorems , in Updated and Tota l Lagrangean forms rca pec t lye ly,
are proposed. The re lative merits of these in application to finite-strain
elasto-plastj.c stress ana lysis, in the treatment of near-incomp resaibi1it~ at
Large plastic flow, and in treatment of buckling problems , are briefly discussed .
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1 • COMPLEMENTARY PRINCIPLES IN UPDATED LAGRANGEAN (UL) FORM: RATE PROBLEM OF
FINITE STRA IN CLASSICAL ETASTO-Pl.ASTICITY :

In this case, the current state CM , wherein the cartersian spatial co-

ordinates of a particle are y
~ 
and the true (Cauchy) stress is rN, is used as a

reference state for measuring the rates of variables , ~n going from 
~~ 

to

If is the coro tational rate of Kirchhoff stress a (~ Si; S is the deter-

minant of the Jacobian); ~ is the UL strain rate fu 1/2 [(V~~) + (!
N.
)
T]j &‘ the

UL spin ra te [
~ 1/2 ~

M
~)
T 

- (!N~)]l ;  f the gradien t opera tor in CM (E e1 ~
( )/

~ is the rate of displacement; ~ and t, respec tive ly, are the ra tes of

second and first Piola-Kirchhoff stresses referred to and measured per unit area

of C
N
; it is well-known that:

~~~~~~~~~~~~~~~~~~~~~~~ t d *~~~~~~~
N N th (1.1,2)

Further , from the relation for the Jaumann stress tensor r [i], viz., r = 1/2

[t . ~ + cyT 
• tT]; we obtain the equation for the UL rate of ~ as:

= l/2 (
~ + • ~ + ~ . + ~T) = - l/2 (~ • + . 4) (1.3a,b)

$ As noted by Hill [2], the constitutive equation of a bilinear form, for work-

hardening elastic-plastic materials , in terms of and 4 can be written as:

= ~V/~~,; V = 1/2 ~~~~~~~~~~~ - 

~ 0’kL~kL~ 
(l.4a ,b)

Where LjjkL~ ~~~, g, and are as def ined in [2) . From Eqs . (1.1-1.4) it is seen

that ,
~~~~~~~~~~~~~~~~~~~~~~ ç~. ~~~~~~ 

(1.5a b)

~ ~~ f~~T ; 
= V~~~T N : (

~
, .

~~~~) ÷ (l/2)T~~ ~~T . è) (1.6a ,b)

t = 
~~QTh4~~ ~ = V - (1/2) N 

(~ , . 4) (l .7a ,b)

where ~ = (fCl)
T
. It can then be shown [3 ,4) that the UL rate form of a corn-

p lementary energy theorem , with & and ~ as variables , can be stated as the

2
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stationarity condition of the f u n c tkn a l ,

(i; ) =
~~~~ 

j

S* .~~~ 
- (l/2)LN: [ ( s )  

. (VNÜ) T) )d v+ 1  ~ . ~ds 
(1.8)

N S~
with the a priori constraints:

Linear Momentum Balance (LMB): • [4 ~~~~~ • ~f.~)] + ~~~ = 0 (1.9)

Angular Momentum Balance (AMB): ~ (1.10)

Trac tion Boundary Cond ition (TBC): . [
~, +f • &ii)] t = t at S~ (1.11)

and is pressumed to be ob tained through the contact transformation,

= 4 :4 - W(4 ) (1.12 )

and with the Euler-Lagrange Equations (ELE) and Natural Boundary Conditions (NBC):

(i) compatibility, 4 = 1/2 [(~~~i~) + ~f~)
T) and (ii) Displacement B.C (DBC),

= U at S~~ . The constraint, of TBC is, in general , impossible to satisf y a

priori; whereas, it may, in some special circums tances , be possible to satisf y

the constraints (1.9 and 1.10). For instance, first noting that 4 +TN •

t, one may assume a t that satisfies thB vN. ~ + P
N
B = 0 (by setting t = vM x~~(yN)

+ t~ where ,~
’ is any particular solution such that vN .t1)= _ P NB) and also assume an

arbitrary but symmetric ~ field that hence obeys the lIMB condition. One can then

eliminate displacements from Eq. (1.8) by setting

= (r~5 ’  . [VN x ’V +~~~ - 4 )  (1.13)

Thus, provided that the principal values of .r
N are not zero (which is a rather

special circumstance) one can express Eq. (1.8) in terms of stress-rates only.

On the other hand one can star t out assuming ~i and then set,

I = curl curl A + e ~; witere p 
= ~~~~ - vN [~ N 

~v
N
~)] (1.14)

where A are the well-known Maxwell-Motera-Beltralfli stress functions and

is any symmetric particular solution, such as, for instance, given by:

= 0 (i~j); ~~~ 
= S~~~i[

..pN
~ 

- 

~
‘kfi&;k3 

dy~ (no stun on 1) 
(1.15)
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However the question of completeness of I~ (or the consquences of a ~~iori set-

ting = 0, i ,~ 3) remains to be answered. Moreover, assuming both I and Ci

as above has the less desirable consequence that the displacements derived from

strain-integrals corresponding to the assumed stresses do not, in general,

agree with the assumed displacements. Lastly, one can first assume (i and

then let,

I = curl curi A -
~~~~~~~~ . (Vt) ~~~~~ ~N - p  

= ~~~~ (1.16)

However , the chosen ê above ceases to be symmetric and the ÂME is violated .

Eventhough the representations as in Eqs. (1.14,15 & 16) appear to be less

than desirable in general, use of such have been made in structural mechanics

of curved beams and shells , and their stability , in [5,6).

On the other hand , an alternate general variational theorem, with i, I,

and ~i as var iables , can be stated [3,4) as the condition of stationarity of

the functional:

~~~~~~~~~ 
~~~~~~~ 

~~~ tz+ t
T
: [(v

Nü)T - I]}dv - J
~ 
t.i~ds -.J~~!. (~~~~~~~ j) ds

N 0
N U

N

(1.17)

which leads to the following ELE and NBC:

(LMB): • + 0; (CC): ~ (V~~)T; (DBC): t~i — U at S ((1.18 ,19 & 20)

(RCL): 2i~ 3 
= z

~
I/2eji = (L

ij~~ 
- ~~~- X X ) ~~~~

’
~~ 

e.t)~~ 
~~im~~ 

émi)T
N
m3

- T iL (
~L j  

- è~~~~) (1.21)

(~4~
) (VNCI)T 1~N ~~~ 

= STh)f; (TBC): ~~ (
~* 

• i) — t at Sa (1.22 & 23)
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The lIMB, Eq. (1.22), is, however, embedded in the structure of U when U is

defined according to Eq. (1.6b). It is also noted that the RCL, Eq. (1.21),

cannot, in general, be inverted analytically. Assuming that Eq. (1.24) can be

invert:d numerically, one can achieve a contact transformation, ~
T
: ~ - u

(,~~) 
= T Lt). If, further, one satisfies a priori the Eqs. (1.18 & 23), one

obtains a complementary energy principle governed by the stationarity of:

*2• * .
= -T(~) dv + $ ~ 

. 
~ 

da (1.24)
SN U

N
which has, as its ELE and NBC, Eqs. (1.19 & 20). This principle was first

stated by Hill [7). However, the ÂME condition, Eq. (1.22) is not an ELE. Thus,

• for the principle to be valid, the lIMB condition, if at all it is met, must

* • * . . * •Tbe embedded in the structure of T~~~); iè., T(,~) must be such that, ~ + ØT/~~ )

= ~
T + rN . Ø~~ /~t). It can be shown [4] that this is not true in general;

and thus the above is not a valid principle, in general.

To avoid the above difficulties, we transform the functional in Eq. (1.17)

to one with~~; Ci; tb; and ê as variables. First we note that ê n 6 +~~ ; and

U = Q + (1/2) N 
~thT . d,) + r~~: ~~T • 6). When these substitutions are

made, we rewrite the functional in Eq. (1.17) as:

• 

VN 

(1/2)1N: ç~
T .~~

) +?: 1~
T 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~ [(V
N .
)
T 

~~~4 -~~J)dv -f t . ~ds -$ t . (t~i - u)ds (1.25)

a
N 

U
N

With the constraint that th must be skew-symmetric. The stationarity of the

above functional leads to the ELE and NBC:

(RCL)’~~Q/~ê = (1/2)(~~+i ~~+~~
T TN ÷~~

T
) ~~~ (1.26)

(LMB)-~ .t + p~~ 0; (~MB)-. 1
N~~ . + ~ 

: (1.27 & 28)

(CC)- (V Ci) = 4  +th; (TBC)-’ n . t t at S ; c~ — u at S (1.29,30 & 31)1- N U
N

4.: . 
•

I 
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It is noted that (ÂMB) is a clear ELE (corresponding to variation ink) and

need not be embedded in the structure of Q. If we establish the contact traits-

formation, that~~: £ - = ~ *(.
~ ) and further if U4B and TBC, Eqs. (1.27 & 30),

are satisf ied a priori, we can eliminate Ci and 6 as variables from Eq. (1.25)

and obtain the following functional whose stationarity condition leads to a

complementary energy theorem:

c~
) = C- R~ ç~) + (1/2)?: 

~~T • ~~ 
~~~~~~~ .

~~ :3dv+$~ (~~~ t) . ~ds (1.32)

N 
~~~~

••

~~~~~~

• -  UN
•T N • .T NWhere , by definition, r l/2(~ + t + • 

~~ 
+ . 

~ 
). In the above functional

the constraints are the LMB, Eq. (1.27) (which is easy to meet by setting

= x ~ + t
1’; t~ is any particular solution such that . — ~~~~~ and

that ~ is a skew-synønetric field [which is easy to meet, by setting = e
i)kwk

.]

The ELE and NBC are the ÂME, Eq. (1.28); CC, Eq. (1.29); and the DBC, Eq. (1.31).

In as much the constraints in the pr inciple are trivia l to be met a priori, and

the ÂME is clearly an ELE , the above complementary principle appears to

be the most rational and consistent for practical applications. In applying

the above principle in conjunction with a finite element method , the initerelemen t

traction reciprocity constraint , (~* ~~~ + (•
~* 

~~) 
— 0 at p ;  can be

relaxed a priori, and enforced through Lagrange Multipliers. In doing this,

either the well-known hybrid-stress FEM of PLan or the equilibrium model of F.

de Veubeke can be used . 
-

*It is worth noting that the above principle is valid for both isotropic as well
as anisotropic materia ls. In the case of isotropy, it can be shown [4) that the
ÂME reduces to the constraint: .rN . b + ~ is symmetric. h owever, even for iso-
tropy , it is more convenient to retain thTs ÂME condition as an ELE correspond ing
to variations in th. Thus , when t (that satisfies IJIB), and a skew-symmetric th
are assumed (which , however, nee~ not obey the AMB even for isotropic materials),
the above defini tion for 4 should be used to recover the AMB as an ELE for either
isotropic or anisotropic materials.

• 6

L 
- — -

~~~~~~~~~~~ 
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-
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2. TL RATE COMPLEMENTARY PRINCIPLES: RATE PROBLEM OF FINITE DEFORMATION
ELASTO -PLASTICITY:

In this case , the initial (undeformed) state C0 is used as a reference

state in all subsequent considerations. Let and be the first and

second Piola-Kirchhoff stress tensors in CM 
as referred to and measured

per unit area in C0; and let t ’ and s ’ be the corresponding TL rates; and

let E ’ be the TL rate of strain. It can be shown that,

= l/2ç~e’ + ,~
,T + elT . ÷ . ,~‘);[where e’ = ~v~~~

T ; eN = ~v
ouN)

T)

(f)
T . . f [where ,? = ~~~~~~~ (2.la,b)

• 4 . çp
N)~~~; t 1 = J~ ( )  = s’ . FNT + . e ’~ (2.2 & 3)

= l/2[tN ~~~ ~~~~~ ~~~~~~~ .~~
N

+~~
NT .t ITJ (2.4)

Further we consider the polar decompositions, FN ~yN • ~~ 
+hN) where I + h

is called the stretch tensor; and e’ = o~’ . (,~ + h
N) + N h’. The rigid

rotation tensors satisfy the orthogonality conditions,ô~ 
~;NT 

1; and crN

,T 
~~~~ = 0. Because of Eqs. (2.lb & 2) it is seen that if W is a

potential for 4 , a potential W ’ can be derived for s such that, 2 ’ = ~W/~~~
’.

Further, because of Eqs. (2.3 & 4) it is seen that:

t ’ = ~u #T h ,T U ’ = W ’ + (1/2) N 
Le

IT . .,~~
I)  . (2.5a ,b)

= ?~Q ’/~ h’ ; Q’ = W ’Q~’) + (1/2) N 
Q~

’ • 2~
) . (2.6a,b)

From the above , we obtain the contact transformations, that,

£‘
~ 

A ’ - W ’ = 
~ ‘(~ ‘)~ ~

,T e ’ — U ’ ~~~(t ’);  r ’ : ~~~~
‘ - Q ’ = 

~ ‘(r ’) (2.7a,b ,c)

Using procedures analogous to these discussed earlier in connection with the

lii rates case , and as elaborated in [4), the TL rate complementary princ iple

with s’, and ~ as variables , can be stated as the stationarity condition of:

7

— - - - — - 
~~~~~~

--  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~



- T’ • 

~~~~~~~~~~~~~~~ 
~~~~~~~~ ~~~~~~~-•--~~—~~~~w-- •~~

p-—---- . • --•

2~~ ..) = J f~~~ I~~~~~ I)  + (j/2)8
N : ~~~T e’))dv - $ t ’ . ~ds (2.8)

C S
0 u

where , e uT = (9
O~~); and with the constraints: ~AMB,: ~ = s ’~~; (1MB): !

0

• F~~J ÷ p°B ’ = 0; (TBC): n . IL
N 

. e 1T + S I pWl~} — = ~~~~
‘ at

S~ . The ELE and NBC resulting from the stationarity of the above functional

are : CC , Eq. (2.la); and DEC , Ct = at S .  The possib le ways to satisfy LMB

a priori, are : (i) to choose ,~~
‘ that sa tisif es LMB and in addition to choose a

symmetric s’, thereby elmina te L
’ as a variable , as: 8N • e

lT + s ’ . F
NT it t 1

= !
0 
x ‘ç + t ’~~; (V0 . t ’1’ = -.p

~~
’) and e lT = ~~N)

_1 
• [~7

O 
x 

~ , 
+~~~‘~ - 

L
’ fT]

which requires that the principal values of be non zero. On the ther hand ,

one can choose i1 in addition to t ’ that satisfies LMB, and derived s ’ from
r O  ~P —

them as:  S = LV x ’l! + t  - s • e j  . ç~ ). However, £ 15 then unsymmetric

in general and hence violates (lIMB). In spite of this, there may be situations

in structural mechanics where the above representation may be satisfactory ;

however, with the same drawback, as discussed earlier , in assuming both stresses

and displacements.

It can be shown [6], as in the UL rate case, the TL complementary principle ,

analogous to Eq. (1.24), in terms of t ’ alone , is invalid in general. Finally ,

• the TL rate complementary principle for finite strain elas to-p1astic~~y, with

t ’ and ~~~~
‘ as variables , which is the counterpart of that stated in Eq. (1.32),

can be stated as the stationarity of the functional:

~ ‘ ;z ’) =J’ f_ R ’ Lr’)_ t’T: ~~ . ~~+ i~~J - l/2 1.?T: [z ’ •2NT

a’’ . (I+~~~)] } dv ÷ t ’ . u ds (2.9)

where r ’ is defined as in Eq. (2.4), and with the constraints: (i) ~~ . t’ +

= 0, which is easy to ,meet by setting t’ = V 0 
x~~ + t ”~; (ii) ~~~~~~~~~ +

NTz • 
~ 

= 0 which is also easy to satisfy by writing = orjj(9
k
) where e k

8 
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are Euler-angles of rigid rotation; and (iii) it . t’ = t  at S
0
. The ELE

and NBC are (i) ÂMB-’ h’ . t . a + (Ii +1) . (t’ . a + t  • &) is symmetric;

4 (ii) CC-. (Vo
t~)
T 

= & . (,~ + b
N) + . -It ’ and the TBC. As before, the above

TL rate complementary principle is believed to be the most consistent for

practical application.

The consistent complementary principles, as stated in Eqs. (1.32 and 2.9)

are useful in (i) obtaining better stress solutions in a numerical analysis of

finite strain elasto-plasticity and (ii) in treating áituations of near in-

compressibility as many arise at large plastic flow and (iii) in analysis of

stability problems. Numerical evidence for (i) and (ii) appears to provided

in the finite elasticity solutions for compressible as well as incompressible

materials reported in[8,9]. In the stability problems, it is seen that the

functional ,
p

~ c~ ,a ’) = J ~~~~~~~~~~~ ~~~~~~~ [~~
‘ . ~~ + h N )] + (l/2)t

NT 
[0!’ . . 0!’

( I + h N )])dv 
- 

(2. 10)

with the constraints V0 . t ’ = 0, aN 
. a l T 

+ z ’ crNT = 0; and it . t’ = 0 at S

attains a zero stationary value at neutral equilibrium. In an FEM procedure

this translates into the criterion that the current stiffness matrix becomes singu 1~ii-

If the prebuckling state, say C0, is linear, one can make the usual approxima-

tions: Ii =2
~ 

a’ = ,~~
; and ,~’ = 1/2(1’ + t ,T 

+a IT . t
o 

+~~
0 

. a”~~; and Eq. (2.10)

becomes,

~ c~’ ;z’) + t ’
~~: + (l/2)t0T ~~~~~~‘ z ’)) th ’  (2.11)

\ 

with  the constr .~int s a ’ = o t T ; !
O 

. t ’ = 0; n . t ’ = 0 a t  S
~~~

, and thus leads

• to an eigin value problem .
9

-: .
~~~

. 
--

~~~~~~~~~~~~~ 
_ _ _



p .  —

~1
A CKNOWLEDGEMENTS:

The financial support for this work from the U.S. Office of Naval Research

is gratefully appreciat - -i . The author expresses his appreciation to Dr. Nicholas

Perrone for his encouragement. Thanks also go to Mrs. T. Rapp for her skillful

typing.

REFERENCE S :

1. de Veubeke, B. F., “A New Variational Principle For Finite Elastic Dis-
placements”, m t .  J. Engng. Sci., 10, (1972), 745-763.

• 2. Hill , R. , “Eigeninodal Deformations in Elast ic /Plast ic  Contina”, J. Mech.
Phys. Solids, 15, (1967), 37 1—386 .

3. A t lu r i, S. N.  and Murakawa , H. ,  “On Hybrid Finite Element Models in Non-
linear Solid Mechanics ” , Finite Element in Nonlinear Mechanics , Vol. 1, P.
C. Bergan, et.al (Eds.) Tapir, Norwegian lastitute of Technology, Norway,
(1977), 3—41.

4. At lu r i , S. N., “On Some New General And Complementary Energy Theorems For
The Rate Pro~ 1ems in Finite Strain , Classical Elasto-Plasticity”, J. Mech.
Phys. Solids, (1978) (In Review).

5. Atl uri , S. N., “On Hybrid Stress Finite Element Model For Incremental Analysis
of Large Deflection Problems”, Int. J. Solids Struct., 9, (1973), 1177-1191.

6. Roland , p. and Pian , T. H. H., “Large 1)eflection Analysis of Thin Elastic
Struc tures By the Assumed Stress Hybrid Finite Element Method” , Computers
& Struct., 7, (1977).

- 7. Hill, R., “Some Basic Principles in the Mechanics of Solids Without a
Natural Time”, 3. Mech.Phys. Solids, 7, (1959), 209-225.

8. Murakawa, H. and Atluri , S. N., “Finite Elasticity Solutions Using Hybrid
Finite Elements Based on a Complementary Energy Principle”, 3. App l. Mech .,
45, (1978), 539-548.

9. M,irakawa , H. and Atluri , S. N., “Finite Elasticity Solutions Using Hybrid
Finite Elements Based on a Complementary Energy Principle - II. Incompressible
Materials”, J. Appk. Mccli. (to appear).

10

_ _ _ _ _ _ _ _ _ _ _ _  
1~~ 

• • • ~~—~~~~~~~~ -~-
•, • 

- .
‘ 

- - — -  -
-~

- - -:--
.
-- --- -

—~~~~~ — 
—.—-

~~~
-—-•—----

~~~~~~~~~~~~~~
— 

~~~~~ ~~~~ ~~
- - -

~ 
-~—-..- ~~~~~~~~~~~~~~~~~~~~~~~~~ - ‘

~~~~~~~~
-
~~~~-



• —~~~~~-- - •~~-~~~-- ~~~~~~~~ —----- ~~~~ ‘ —----- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ . ~~~~~~~ • —.-.---- •— • • -  ~~ — --~— --- -  -.~~ ~~~~~~~~~~~~~~~~~~~~~ —-- --. - ——-~—----—-- •

SECURITY  C L A S S I F I C A T I O N  OF THIS PAGE (W?,.n Date Entered) 
______________________________________

DEPA°T 
~~~~~~~~~~~~~ 

PAI~E 
READ INS Tn;UCTIONS

“ ‘i” 
. .  

““‘ “ “ U’-” ~~ BEFORE COMPi.ETING Fo RM
2 GOVT ACCESSION NO. 3. R ECIPIENT’ S C A T A L O G  NUMBER

~~~~~~T-ESM-SNA-l4 , T/~~
- 

~~~~

.J I 
_________________

4, • OF REPORT S ~~~~~~~~~~ V E R E O

~~~~~~~ J 

Rate complementary Energy Principle:; ~~~~~~~~terim /~~~~t.,

~ 

thite Elements~ 
~~~f W F O R M I N G O R G .  REPORI NUMBER

• 7. A UTHOR(s) B- CONTRACT OR GRANT NUMBER( S)

C ratYa N

~~~~

1u

~~J
PERFORMING ORGANIZATION NAME AND ADDRESS ¶ 0 . PROGRAM ELEMENT. PROJECT T A S K

AREA & WORK UN IT N U M B E R S
Cooperative for the Advancement of Computational
Nechanics — School of Civil Engineering NR 064—610
Georgia Institute of Tech., Atlanta , Ga. 30332

II . CONTROLLING OFFICE NAME AND ADDRE SS ~~~~~~~~~ ...

I1 1/ Juna” 79
Off ice of Naval Research \~ dNUMB E R O F  PAGES

Arlington, Va. 22217 8
14. MONITORING AGENCY NAME & ADORESS(iI d tent ~~~~~~~4ff1.~ cc) IS. SECURITY CLASS. (of this repor’)

/~_. j L Unclassified
— • • - . IS.. PECL A SS IF ICAT ION OOW NGRAOIN G

~~~HEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

Unlimited

¶ 7. DISTRIBUTION ST. lENT (of I’ . abstract entered in Block 30. Ii different from Report)

15. SUPPLEMENTARY V ES

To appear in Proc. of IUTAN Symp . on Variational Methods in Mech ’rtics
(S. Nemat—Nasser & K. Washizu , Eds) Pergatnon

¶ 9. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Complementary Energy ; Finite Elements; Finite Strain Plasticity

20. ABS”~.~~~CT (Continue on reverse sHe if necese .ry and identify by block number)

Complementary energy theorems , for the rate problem of finite strain
classical elasto—plasticity , in both Updated and Total lagrangean forms
with alternate stress—rates and conjugate measures of strain rate, are
studied from the point of view of their application in finite elements
schemes. Two new complementary theorems, in Updated and Total Lagrangean
forms respectively, are proposed . The relative merits of these in applica—
tion to finite—strain elasto—plastic stress analysis, in the treatment of ~~ (

DD FORM
I JAN 73 1473 Unclassified

SECURITY CLASS I liON OF THIS PAGE (W1~en Dais Entr.r..,t(

-.~~~~~~~ 
_ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _

~
o,.—_.— — 

— ~~~~~~~~~~~ 
..—.——--—--——-- 

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~-,,_~~ &st

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~



- . -..-.—--- - —- 
.—.— ---—--..—

~~
,..——,- •

~
— •—

~
-—• • 

~— -~ r ’~— ~
- - -•— —--— —--—

~~~~
..-...-.-.-— -,.———-— -— —

~
— .-. - --. • -- —.-— —-•-- • —-- - —

—I”

lIncl.nsgif lmrl
SECURITY CLASSIFICATION OF THIS PAGE(II7IIS Dais Entered)

20. Abstract (continuted)

near—incompressibility at large plastic flow, and in treatment
of buckling problems , are briefly discussed.

SECURITY CLASSIFICATION OF THIS PAGE(When Dei. EnI.red)

_ _  _ _ _

— ~~~~~~~~~~ —-- ~~~~~~~~~~~~~~ — — —•~~~ —. -•~~~~~-~~-. ~~~- ~~~~~~ —.~--~- -.----. —5— ~__~s_. ~~~ .‘. — ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~


